ИСПОЛЬЗОВАНИЕ ОСНОВОВЯЗАНЫХ ПОЛОТЕН НА ФИЛЬТРАЦИИ ПУЛЬП В ДИСКОВЫХ ВАКУУМ-ФИЛЬТРАХ

Л.А. Филянова., Б.Ж. Медиханов

Дочернее Государственное Предприятие «ВНИИцветмет», г. Усть-Каменогорск, РК. Риддерский металлургический комплекс, ТОО «Казцинк», г.Риддер, РК

Дисковые вакуум-фильтры предназначены для фильтрации пульп и растворов с высоким содержанием в них твердых веществ. К числу основных показателей их работы следует отнести срок эксплуатации полотен, который зависит от исходных прочностных параметров фильтровального материала, и содержание твердых веществ в фильтрате, что, в свою очередь, характеризуется воздухопроницаемостью полотен.

ВНИИцветметом совместно с исследовательским центром РМК ТОО «Казцинк» в дисковых вакуум-фильтрах проведены опытно-промышленные и промышленные испытания ряда основовязаных полотен типа ВФ производства ОЭП «Комета» (г. Витебск, Белоруссия). В этих фильтрах на РМК осуществляется фильтрация меднокадмиевого кека и в качестве полотен в них использовались фильтровальные материалы арт. С-4 или арт.86033. Экспериментальные и применяемые фильтровальные материалы изготовлены из лавсановых волокон, выдерживают температуру эксплуатации до 100° C без потери эксплуатационных свойств и отличаются между собой способом производства. Применяемый фильтровальный материал С-4 характеризуется ворсистой поверхностью с обеих сторон и изготовлен холстопрошивным способом, при котором заданный слой волокна прошивается (закрепляется) нитью. Арт. 86033 представляет собой ткань на основе пряжи переплетением саржа 2/2. Опытные фильтровальные материалы изготовлены в виде трикотажных полотен из комплексных нитей, в которых основа (застил) и уток закрепляются еще одной комплексной нитью. При этом одна сторона полотна имеет слегка ребристую поверхность, а другая – гладкую. При фильтрации растворов и пульп гладкая поверхность находится со стороны осадка, что способствует снимаемости, а ребристая - со стороны чистого фильтрата. Во время проведения испытаний в эксплуатации одновременно находились традиционно используемые и опытные полотна.

Согласно рабочей программе во время испытаний фиксировались основные технологические показатели: содержание твердого в исходной пульпе и фильтрате, РН растворов, их температура, толщина слоя кека на полотне и его влажность, разрежение в системе сжатого воздуха и т.д. Кроме этого, перед началом испытаний и после снятия определялись физико-механические характеристики всех типов фильтровальных материалов. На начальном этапе испытаний замена полотен в фильтре осуществлялась в соответствии с существующей в цехе практикой: через каждые двое суток менялся один из шести дисков, т.е. во время этих испытаний в эксплуатации одновременно находились полотна со сроком службы от двух до 12 суток, затем постепенно увеличили срок эксплуатации опытных полотен до 21 суток. Полученные результаты по определению физико-механических характеристик фильтровальных материалов до и после эксплуатации приведены в таблице 1, из анализа которых следует, что:

-за время эксплуатации воздухопроницаемость основовязаных полотен $B\Phi$ -18 и $B\Phi$ -12 по сравнению с исходной снизилась в 1,4 раза, а остальных полотен (в том числе и опытных $B\Phi$ -19) – в 31,3—40,8 раз;

Таблица 1 — Сравнительные физико-механические характеристики используемых и опытных полотен типа $B\Phi$ до и после испытаний

Наименование		Опн	ытные основ	овязаные г	Применяемые материалы					
показателей	ТУ РІ	5 300478750	.004.2004	П	осле испыта	ний	Арт. 86033		C-4	
	ВФ-18	ВФ-12	ВФ-19	ВФ-18	ВФ-19	ВФ-12	ТУ 8388- 001-503- 63891.00	после испытаний	ТУ 17-14- 240-84	после ис- пытаний
1.Macca 1 м ² , г	328 +- 20	359 +- 20	322 +- 20	-	-	-	316+-16	-	390+-20	-
2.Толщина материала, мм	0,64 – 0,68	0,74 – 0,78	0,61 – 0,65	-	-	-	1,0	-	1,5	-
3. Разрыв. нагрузка полоски материала размером 50*200мм, кгс	95	91	77	112	62	110	105	113	51	48
по основе по утку	142	151	168	54	160	90	40	60	122	48 114
4. Удлинение полосок материала при разрыве, %:										
по основе по утку	63 73	34 90	100 76	55 44	63 28	37 19	50 32	36 27	64 80	57 71
5.Воздухопроницае- мость материала при $P = 50 \text{ Па}, \text{дм}^3/\text{м}^2*\text{сек}$	156 - 166	321 - 331	108 - 118	111,6 ± 12,3	8,0 + -0,4	81,5 +- 5,3	310,0	7,7 +- 0,4	Не менее 200,0	6,4 +-0,4
6. Срок эксплуатации полотен, сутки	-	-	-	22	14	21	-	15	-	12

Таблица 2 — Усредненные показатели фильтрации медно-кадмиевой пульпы полотнами $B\Phi$ -12, $B\Phi$ -18 и $B\Phi$ -19 и применяемых ранее холстопрошивного полотна C-4 и арт.86033 за весь период наблюдений за фильтром $ДB\Phi$

Тип	Исходная Cu-Cd пульпа		Срок	Разреже	Плотность	Содержа-	Количес-	Количество	Удельная	Общий	
фильтровально	Содержа	PH	T, ⁰ C	службы	-ние в	влажного	ние твер-	тво Cu-Cd	влажного	производи-	объем
го материала	ние твер-			полотен,	фильтре	кека, %	дого в	сухого	кека, т/сутки	тельность	пульпы,
	дого,			сутки	, кПа		фильтра-	кека,		фильтра по	м ³ /сутки
	г/дм ³						те, г/дм ³	т/сутки		сухому кеку, т/м ² *час	
Холстопрошив											
-ное полотно	145,5	5,10	51	12	0,30	1,61	6,51	47,12	67,64	0,062	325,0
Ткань арт. 86033	129,0	5,10	51	15	0,30	1,61	2,64	49,50	69,30	0,065	384,0
Основовязаное полотно ВФ-18	156,1	5,36	46	21	0,25	1,60	2,25	32,34	47,20	0,042	277,0
Основовязаное полотно ВФ-19	114,4	5,33	47	21	0,21	1,58	2,3	36,08	52,95	0,044	316,5
Основовязаное полотно ВФ-12	114,4	5,33	47	21	0,21	1,58	2,25	36,08	52,92	0,044	316,5

- разрывная нагрузка для экспериментальных полотен после испытаний по длине материала изменилась незначительно, а по ширине снизилась в 1,5 раза, а для традиционно применяемых этот параметр снизился по ширине в 2,3 раза и по длине – в 2,1 раза.

В течение всего периода испытаний температура исходной пульпы была в интервале $45-51^{0}$ С, удельный вес -1,37-1,55 г/дм³, скорость вращения дискового вакуумфильтра -5 мин 47 сек, разрежение 0,21-0,35 кПа, рН -5,1-5,4. Толщина осадка на экспериментальных полотнах во время проведения испытаний была в интервале 8-25 мм с влажностью сбрасываемого кека 34-46 %, а для традиционно используемых полотен эти параметры соответственно были в интервале 5-30 мм и 37-45 %. Визуально кек с опытных полотен легко удалялся и их поверхность была довольно чистой в отличие от традиционно применяемых.

Наблюдение за процессом фильтрования показало, что при одновременном использовании полотна ВФ-18 и ткани арт.86033 обеспечивалась в среднем более высокая толщина слоя сбрасываемого кека на экспериментальном материале и практически равная его влажность, а по сравнению с холстопрошивным полотном С-4 наблюдалась равная толщина и более низкое значение влажности кека.

В таблице 2 приведены усредненные показатели процесса фильтрации меднокадмиевой пульпы на ДВФ с опытными полотнами типа ВФ и применяемых ранее из холстопрошивного полотна С-4 и ткани арт.86033, из анализа которой следует, что:

- при использовании основовязаных полотен типа ВФ по сравнению с холстопрошивными полотнами произошло снижение твердого в фильтрате в среднем в 2.9 раза (с 6.51 г/дм³ до 2.25 г/дм³)
- срок службы ранее используемых полотен из холстопрошивного материала был равен 12 суткам, арт.86033 15 суток, а ВФ-18 и ВФ-12 21 суток.

Таким образом, проведенными опытно-промышленными и промышленными испытаниями установлена применимость основовязаных полотен ВФ-12 и ВФ-18. При их использовании возможно снижение затрат на его приобретение из-за увеличения срока службы фильтровальных полотен с одновременным снижением твердого в фильтрате. В настоящее время полотна ВФ-12 и ВФ-18 на РМК находятся на стадии внедрения.

Кроме этого планируется провести аналогичные испытания на других предприятиях цветной металлургии.

Опубликовано в сборнике трудов VI Международной конференции «Инновационные разработки в горно-металлургической отрасли»

19 мая 2011г., ВКГТУ им. Д. Серикбаева, г. Усть-Каменогорск